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Experimental investigations of natural convection in a porous layer placed 
between two horizontal and isothermal plane surfaces have revealed a new type 
of convection as the Rayleigh number Ra* increases: fiuctuating convection. A 
numerical study carried out on a two-dimensional model in order to simulate 
this phenomenon shows that, apart from the influence of the Rayleigh number, 
the aspect ratio A (length/height) of a vortical cell is the most important para- 
meter for the occurrence of this type of convection. These quasi-periodic fluc- 
tuations induce important variations in the temperature field and in the stream- 
lines. The total heat transport, as defined by the Nusselt number NU*, varies 
within limits which may be separated by 80% of the mean value. Using the 
Galerkin method it is possible to deduce the conditions for the onset of convection 
from a state of pure conduction and also to define the critical conditions for the 
development of fluctuating convection from another perturbed state. A physical 
interpretation of the results is given for each type of convection. The results 
seem to agree with the experimental and numerical results obtained by different 
authors. 

1. Introduction 
The first studies of natural convection in a porous medium limited by two 

isothermal planes maintaining an adverse temperature gradient were carried 
out by Horton & Rogers (1945) and Lapwood (1948). Lapwood determined the 
criterion for stability of the conduction state of such a layer and suggested in his 
linear analysis that convection occurs at  Rayleigh numbers above 4 ~ 2 .  

Experiments have been made by numerous authors in order to check this 
criterion: Katto 8: Masuoka (1967), Schneider (1963), Combarnous (1970), Bories 
(1970) and Cloupeau 8: Klarsfeld (1970). Their results have confirmed this 
critical Rayleigh number for the occurrence of convection. These authors carried 
out their investigations beyond the critical conditions and pointed out the 
dominant influence of the Rayleigh number on the temperature field (the larger 
this parameter, the more distorted the isotherms) and on the total heat transport 
as characterized by the Nusselt number. The relation between the Nusselt and 
Rayleigh numbers essentially depends on the ratio of the thermal conductivities 
of the solid-liquid mixture. For this reason, Combarnous & Bories (1973) have 
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developed a numerical model which takes into account these effects associated 
with the heat transport between the saturating fluid and the porous layer, the 
range of investigation there being limited to Rayleigh numbers lower than 400. 

Some experiments (Combarnous & Lo Fur 1969; Caltagirone, Cloupeau & 
Combarnous 1971) have revealed another mode of convection, characterized by 
instabilities in the region of highest temperature gradient, when convection is 
very important and the Rayleighnumber is about 7 times the critical value for oc- 
currence ofnatural convection (200-390). This phenomenon was first observed in 
cells of great extent (side lengthllayer height). However, experiments carried 
out with cells with sides larger than their heights have also shown that these 
fluctuations are two-dimensional (Caltagiron 1971). A film prepared with this 
type of quasi-two-dimensional cell shows the dynamics of these instabilities. 

Theoretical interpretations have been given by Busse & Joseph (1972) and 
Gupta & Joseph (1973), who considered previous work on the BBnard problem 
(Howard 1963) to determine the critical conditions for the occurrence of these 
instabilities as well as the variations in the Nusselt number with the Rayleigh 
number. 

Straus (1974), using a series development of the temperature and the stream 
function, showed that for Ra* < 380 stable two-dimensional convection can 
exist, while above this value there are always unstable phenomena. A numerical 
study of this problem developed by Horne & O’Sullivan (1974) for two sets of 
boundary conditions supports the observations of fluctuating phenomena in a 
Hele Shaw cell. The qualitative similarity of these results to those found by the 
author (1974) in his systematic study of stability as a function of the aspect 
ratio should be noted. In  order to define the critical conditions for the occurrence 
of fluctuating convection as well as the main parameters controlling these in- 
stabilities two methods of investigation are discussed in this paper. 

(i) The equations for natural convection are solved after having been trans- 
formed into difference equations over a rectangular two-dimensional network. 
The investigation covers the range Ra* = 1&2000 with the aspect ratio (width/ 
height) varying from 0.10 to 4. 

(ii) The Galerkin method used to solve any eigenvalue problem is applied to 
the equations corresponding to a disturbed state. This method enables us to 
locate the points of appearance of these instabilities in the thermoconvective 
cell. 

2. Formulation of the problem 
Consider a saturated porous layer of permeability K ,  porosity E and height H 

subject to a temperature gradient AT and dynamic pressure p .  The saturating 
fluid has thermal expansion coefficient a, heat capacity (pc), and coefficient of 
kinematic viscosity v. The porous medium is treated as a fluid of thermal con- 
ductivity A* and heat capacity @)*, so that a t  a given point, solid and liquid 
have the same temperature (a more detailed description of the phenomenon is 
given by Combarnous & Bories 1973). 

Some simplifying hypotheses have been made: that the saturating liquid and 
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the porous layer are incompressible and that the physical properties of the 
medium are independent of the temperature. Variations in density with tem- 
perature are neglected except in the buoyancy term (Boussinesq's approxima- 
tion). 

The equations for natural convection are written as 

P P , ,  + (V. V )  V) = - VP + pg - ( p m  v, 
P = POP - 4 y  - Toll, 

@C)* T t  = h"V2T - ( p ~ ) t V .  (VT).  

(1) 

(2) 

v.v = 0, (3) 

(4) 

Using dimensionless parameters (represented by the same symbols) with H 
for the length scale, (pc)* H2/h* for the time scale, AT for the temperature scale 
and h*/H(pc), for the velocity scale, we get for a two-dimensional problem the 
reduced equations 

MU,, = -V.(wV)-Pr"F(Ra"T,,+w), ( 5 )  

w = -V@, (6) 

(7) T ,  = V2T - V . (VT) ,  
with 

0 = (0, w ,  0) = v x v, 8 = @ , O ,  - g ) ,  v = (K, 0, v,) = ( - $,,, 0, @,,I, 
where @ is the stream function. Expressions (5)-( 7) include the Rayleigh number 
Ra* = ga(pc)fATHK/vh*, the Prandtl number Pr* = ~(pc)~/A* and two num- 
bers describing the porous medium: M = (~c )~ / (pc )*  and P = H2/K. For the 
media commonly encountered or used by different experimenters F lies between 
lo5 and lo7, making negligible the other terms in (5). Some numerical studies 
have shown, furthermore, that even large variations in F do not affect the 
results very much. 

There appears from these equations to be a close relation between the tem- 
perature and the vorticity, especially in the time derivatives T t  and w,t.  But 
these partial derivatives have very different orders of magnitude: w,, is very 
much larger than T,, so that in the energy equation the term T', is sufficient alone 
for a solution of the system as a function of time, the velocities being at any 
time those corresponding to the temperature field. 

On the other hand, as the Reynolds number based on the mean pore radius 
is less than 10 in most cases, the energy term in (5) may be neglected. Conse- 
quently, the above considerations lead to a new formulation of the system using 
Darcy's law for flows in porous media: 

V2$-Ra*Tz = 0, 

V2T -V .(VT) = Tt. 

Apart from some attempts to evaluate the influence of F ,  only these equations 
in fmite-difference form have been solved, for a two-dimensional range. 
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3. Numerical solution 
The solution domain is a rectangle of height H and width L. An important 

parameter is defined by these two dimensions: the aspect ratio A = L/H. 
Setting x’ = xHA and z’ = zH the geometrical characteristics of the range 
become dimensionless. x’ varies from 0 to I;, z’ from 0 to H ,  x and z from 0 to 1.  
Equations (8) and (9) then become 

(A-21Cr,~~+1Cr,z~)-A-1Ra*T, = 0, (10) 

(A-y, + y,,, - (W-lTz + V,yz, = q, (11) 

with v,= -$ ,B, v, = A-v,z.  (12) 

The boundary conditions assigned to the model may be of one of several 
types: DirichIet, Neumann or Fourier. As most experiments have been made 
with quasi-isothermal surfaces, we shall consider in this study only boundary 
conditions of Dirichlet type. The horizontal boundaries are isothermal and 
impermeable, the lateral surfaces adiabatic and impermeable. The cell thus 
defined is supposed to reproduce a particular thermoconvective roll in a layer 
of infinite extent. The (accurate) boundary conditions are then written as 

@ = 0, T = 1 for z = 0 for allx, 
$ = 0, T = 0 for z = 1 for all x, 
$ = 0, T z  = 0 for x = 0,1 for all z. 

The initial conditions concern the temperature field. A consistent distribution 
of the form a cos nn-x sin mn-z (where a is an amplification coefficient and m and n 
wavenumbers) is introduced into the calculation. 

The network superposed on the physical domain and representing the geo- 
metrical discretization is chosen according to the Rayleigh number. The higher 
the Rayleigh number, the finer the network for the temperature and velocity 
gradients, increasing in some parts of the cell. In  practice a network with 33 x 33 
nodes is chosen for a ReyIaigh number loss than or equal to 100 and a network 
with 49 x 49 nodes above 100. 

Expression (lo), which is an elliptical equation of Poisson type, is expressed 
in finite-difference form and solved by the method of alternating directions. 
This method is well known and will not be described here. For a given tem- 
perature field the second term in (10) is calculated and a convergent iterative 
process enables us to calculate the stream function for each node and therefore 
the corresponding velocity field. 

The parabolic equation (1 1) is also solved using the method of alternating direc- 
tions, but contrary to the solution of (lo),  in which a simulated time was used to 
obtain a convergent solution, the time is here physical time and the time step 
must be chosen according to the phenomenon studied. This energy equation is 
correctly solved by means of an iterative calculation with the same time step 
because its second term also includes the temperature. The second term in (10) 
is calculated from the initial temperature distribution and (10) is solved to 
determine the stream function. Velocities deduced from this computation are 
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introduced into the second term in (ll), which gives a new temperature field. 
The cycle is then repeated at  the next time step. For each time step we deter- 
mine the heat transport for all horizontal lines of the network by means of the 

expression 1 
Nu" = h,,,,/h" = J ( T , + K T ) d x .  

0 

The total Nusselt number is obtained by taking the average. The calculation is 
continued until a result independent of the prescribed initial conditions is ob- 
tained. The number of iterations varies from 100 to 1000 depending on the regime 
encountered. Tests are introduced to stop the calculation in the case of conver- 
gence. The computing time for a given Rayleigh number and aspect ratio and 
for a network of 49 x 49 nodes is about 2 s per iteration using an IBM 370-168 
computer. The isotherms and streamlines are traced for each time step from the 
temperature field and stream-function distribution and then reproduced by a 
Benson-tracer. Using a fine network (49 x 49 nodes) as well as a small time incre- 
ment it is easy to reach a Rayleigh number as large as 2000. The aspect ratios 
studied vary from 0.1 to 4. 

4. Results 
Numerical results for natural convection in a horizontal porous layer are 

reproduced in figure 1 (Nusselt number Nu* us. aspect ratio A )  and show different 
types of evolution according to the values of the Rayleigh number Ra" and the 
cell aspect ratio A. For a given Rayleigh number three types of convection are 
successively observed as A increases. 

(i) For small values of A we note a behaviour corresponding to range I in the 
plot of aspect ratio vs. Rayleigh number (figure 2).  

(ii) As A increases the solution tends to a solution corresponding to stable 
natural convection (range 11). 

(iii) For still larger values of A ,  fluctuating convection takes place: range 111. 
Range I. The perturbation introduced by initial conditions in the form of sinu- 

soidal waves decreases and the system tends to the pure conduction solution: 
the temperature distribution is a linear function of z ,  the velocities are zero and 
the Nusselt number is unity. The further the point is from the curve of marginal 
stability, the faster this conduction regime is reached. The absolute minimum 
of this curve is equal to Ra" = 4n2 and occurs for A = 1. 

The curve of marginal stability found numerically follows very well the 
variation with A of the critical Rayleigh number for the onset of convection 
which is given by the linear stability theory developed by Lapwood (1948). 
For two-dimensional rolls this theory yields a critical Ba* = (n2n2 + a2),"/a2 with 
a = nm/A, where m is the number of rolls in the cell (of aspect ratio A )  and n 
the mode of instability desired. The perturbation introduced to evaluate the 
stability criterion has the form sinnnz. In  fact, only the first mode (n = 1) has 
a physical reality: the critical Rayleigh number corresponding to the successive 
modes can only be verified from a stable conduction state, but this is impossible 
for n > 1 because of the development of convection due to the first mode. 

18 ! F L M  72 
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! Ru* = 1000 
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FIGURE 1. Numerical results: variation of the Nusselt number Nu* as a function of the 
aspect ratio A for various values of the Rayleigh number Ra*. 
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FIGURE 2. Aspect ratio us. Rayleigh number, showing three types of evolution: range I, 
conduction; range 11, stable convection; range 111, fluctuating convection. 

The curve of marginal stability plotted in figure 2 shows the first mode with 
the number of rolls per cell corresponding to the minimal Ra* value (Beck 1972). 
For large values of the aspect ratio the numerical model generates or eliminates 
convective rolls in order to return to the condition of Ra* minimal. It is of in- 
terest to note that for Ra* = 1000 natural convection occurs for a cell aspect 
ratio of about 0.1. 
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FIGURE 3. Variation of the Nusselt number Nu* as a function of time during 
calculation for a Rayleigh number of 200 and an aspect ratio of 0-8. 

275 

FIGURE 4. (a) Temperature field and ( b )  streamlines corresponding to a 
Rayleigh number of 200 and an aspect ratio of 0.8. 

Range 11. Beyond the curve of marginal stability the initial perturbation 
develops to give a stable convergent solution which does not depend on the 
intensity or nature of this perturbation. The result of a calculation corresponding 
to this type of evolution (Ra* = 200, A = 0-8) is shown in figure 3, in which the 
Nusselt number Nu* is plotted as a function of time. 

Within this range of stable convection the Nusselt number increases, passes 
through zero then again decreases as A increases (figure 1). This minimum 
moves towards small aspect ratios as the Rayleigh number increases, thus 

18-2 
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FIGVRE 6 .  Variation of the Nusselt number as a function of time for a 
Rayleigh number Ra* = 800 and A = 0.8. 

confirming the numerical results found by other authors: Combarnous (1970) for 
a porous layer and Moore & Weiss (1973) for a fluid layer. Figure 4 shows as an 
example the temperature field and streamlines for Ra" = 200 and A = 0.8. The 
initial system is already strongly perturbed and a gradient opposite to the initial 
one even appears in the middle of the cell. The strong temperature gradients 
seem moreover to be located on the lower and upper sides of the rectangle, the 
centre being filled with a quasi-isothermal core. The higher the Rayleigh num- 
ber, the more pronounced are these phenomena. 

Range 111. This range is characterized by the fact that a stable regime cannot 
be reached. The temperature field, the filtration velocities and the Nusselt 
number fluctuate with time whatever the number of iterations in the calculation. 
However, the evolution may sometimes have a quasi-periodic character when 
the effects of the initial conditions have disappeared. Figure 5 shows the varia- 
tion of Nu* as EL function of time for a cycle of evolution corresponding to the 
temperature field and streamlines shown in figure 6. 

The t<ypes of evolution observed, characterized by different configurations of 
the temperature field and streamlines, differ considerably, especially for large 
Rayleigh numbers. For comparatively moderate Rayleigh numbers lying be- 
tween 300 and 800 and aspect ratios such that the point (Ra", A )  in figure 2 is 
not too far from the curve delimiting ranges I1 and I11 the temperature and 
velocity fields are perturbed by instabilities arising near the middles of the cell 
sides (figure 6). These microvortices develop and are simultaneously carried 
away by the mainstream. When conditions o€ instability are reached two new 
vortices arise, giving the phenomenon a periodic character. Figure 6 shows the 
different phases of such a cycle for Ra" = 800 and A = 0.8. For Ra" values of 
order 1000 and relatively small values of A a new configuration is observed: four 
counter-rotating vortices varying around a mean position are found to coexist 
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FIGURE 6. Variation of (a) the temperature field and ( b )  the streamlines during a cycle. 
The Rayleigh number is equal to 800 and the aspect ratio to 0-8. 
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(4 (4 
FIGURE 7. (a) Temperature field and ( b )  streamlines corresponding to a 

Rayleigh number of 1000 and an aspect ratio of 0.8. 

Stable Fluctuating Stable 
Ra* A Network Nu* Nu* (max, min) ~ (max) 

10 1 24 x 24 1.000 - 0.0 

477% 1 1.000 - 0.0 

50 0.4 32 x 32 1.000 - 0.0 
0-5 1.000 - 0.0 
0.6 1.000 - 0.0 
0.7 1.220 - 1-199 
0.8 1.342 - 1.620 
1 1.450 - 2.112 
1-2 1.386 - 2.131 

100 0.1 32 x 32 1-000 - 0.0 
0.2 1.000 - 0.0 
0.3 1.000 - 0.0 
0-4 1.426 - 1-462 
0.5 2.136 - 2-800 
0.6 2.482 - 3.684 
0.8 2.677 - 4.784 
0.9 2.676 - 5.126 
1 2.651 - 5.377 
1.2 2.544 - 5-658 
1.5 2.314 - 5.677 
2 1.853 - 4-783 

200 0.1 48 x 48 1.000 - 0.0 
0.2 1 .000 - 0.0 
0.3 2-541 - 2.690 
0.4 3.783 - 4.704 
0.5 4.026 - 5.996 
0.6 4.027 - 6.918 
0.8 3.941 - 8-180 
1 3.813 - 8.942 
1.5 3.381 - 9.654 
2 2.914 - 9.380 

TABLE 1. Numerical results: Nusselt number Nu*, maximum value of the stroam 
function for different values of the Rayleigh number Ra* and of the aspect ratio A .  
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250 

300 

500 

800 

1000 

2000 
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A 

0.4 
0.6 
0.8 
1 
1-50 
2 

0.3 
0.4 
0.5 
0.6 
0.8 
1 
1.5 
2 

0- 1 
0.15 
0-2 
0.25 
0.3 
0.4 
0.6 
0.7 
1 
1-5 

0.05 
0.1 
0.15 
0.17 
0.2 
0.3 
0.4 
0.5 
0.6 
0.8 
1 
1-25 
1.5 

0.02 
0.03 
0.05 
0- 1 
0.15 
0.2 
0.25 
0.3 
0.4 
0.5 
0-6 
0.8 

0.02 
0.05 
0.08 
0.1 
0.25 

Stable 
Network Nu* 

48 x 48 4-558 
4.499 
4.355 
4.199 
3.731 
3.250 

48 x 48 4.662 
5.145 
5.016 
4.883 
4.699 
4.523 
4.032 
3.513 

48 x 48 1.000 
1.326 
5.344 
6.822 
7.034 
6.588 
5.986 
5.839 
- 
- 

48 x 48 1,000 
1.000 
6.484 
8-408 
9.152 
8.747 
7.81 1 
7.345 
- 
- 
- 
- 
- 

48 x 48 1.000 
1.000 
1-000 
1.000 
9.183 

10.633 
10.190 
9.455 
- 
- 
- 
- 

48 x 48 1.000 
1.000 
5.300 

12.470 
- 

TABLE 1 (continued) 

Fluctuating 
Nu* (max, min) 

- 
5.618, 5.332 
5.378, 4-501 

- 
7.231, 6.988 
8.361, 6-080 
8.322, 5.390 
7.498, 5-352 
6.981, 5.317 

- 
- 
- 
- 
- 
- 
- 
- 

8.473, 8.321 
10.361, 7.570 
10-198, 7.043 
13.810, 4.460 

- 
- 
- 
- 

28.0. 4.5 
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Stable 
$ (max) 

5.846 
8.105 
9.438 

10.253 
11-097 
10.977 

4.845 
6-828 
8.152 
9.150 

10.544 
11.405 
12.390 
12.270 

0.0 
1.012 
4.425 
6.408 
7.848 
9-906 

12.532 
13.415 
- 
- 

0.0 
0.0 
4-640 
6.285 
7.549 

11.067 
13.357 
15.077 
- 
- 
- 
- 
- 

0.0 
0.0 
0.0 
0.0 
6.290 
9-142 

11.195 
12.813 
- 
- 
- 
- 

0.0 
0.0 
3.400 
6-920 
- 
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in the cell. For slightly larger values of A four or eight additional rolls may 
appear in the cell and modify to a great extent the streamlines and isotherms 
(figure 7). As the aspect ratio increases still further, whatever the Rayleigh 
number, the calculation generates convective rolls and the system is equivalent 
to a type of evolution corresponding to the range I1 of stable phenomena. 

The above observations are not exhaustive and the limits between these 
different configurations are not sharply defined. These fluctuations disturb the 
temperature field, the streamlines, the filtration velocities and the heat transport 
between the two isothermal surfaces. The Nusselt number varies within limits 
whose separation may reach 80% of the mean value. The extremes of the 
variation in the Nusselt number are marked in figure 1. Table 1 gives the quan- 
titative results of this numerical method. 

5. Physical interpretation of the results 
The results of this numerical analysis enable us to define the critical condi- 

tions for stability of a state of pure conduction as well as to determine the regime 
of stable convection and, on the other hand, point out the existence of the 
fluctuating regime. However these results must not delude us. A numerical 
model could not perfectly reproduce the physical situation, apart from the 
discretization involved in the equations and in the range to be studied. 

(i) The model only considers a cell of definite width, while in experimental 
devices many thermoconvective vortices interacting with each other exist in 
the porous layer. 

(ii) In  an experimentaI porous layer instabilities are latent and satisfaction 
of the required conditions is sufficient to make them develop, while in the 
numerical calculation one must either introduce them in form of quasi-periodic 
perturbations or wait until errors develop in the round numbers, which may take 
a good time, especially if the calculation is performed in double precision (17 
significant numbers on IBM machines). This remark appIies especially to the 
transition from the conduction state to stable convection. The different types 
of evolution found can, however, explain some phenomena observed experi- 
mentally, in particular fluctuating convection. The experiments carried out on a 
horizontal porous layer used cells of large horizontal size (Combarnous 1970; 
Bories 1970; Caltagirone 1971) and their results show only a single fluctuating 
critical Rayleigh number varying from 200 to 390 according to the experiment. 
But the numerical analysis shows a noticeable influence of the cell aspect ratio 
on RU?~. 

In the fluctuatingregime observed with an experimental quasi-two-dimensional 
cell (2 cm) instabilities are found to appear in the areas of highest temperature 
gradient and then to develop and disappear into the main vortex. This behaviour 
is also found in the numerical calculation. These perturbations may sometimes 
generate a couple of cells which are inserted between two vortices, causing them 
to  move. In other cases these instabilities develop, inducing the disappearance 
of the vortices on which they arose. The cell expansion seems to increase under 
the influence of the small vortices carried away by the mainstream and a couple 
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FIGURE 8. Correlation between the Nusselt and Rayleigh numbers found experimentally 

by various authors : Bones (1970), Cornbarnous (1970) and Schneider (1963). 

of vortices only seem to appear after conditions are met which agree with the 
results corresponding to range I11 of figure 2. 

The increase in the total heat transport induced by fluctuating phenomena 
and characterized by a change in the slope in the correlation Nu* vs. Ra* (figure 8) 
can be explained by local heat arrival: downflow of cold liquid and upflow of 
warm liquid as a new pair of vortices appears. The numerical model used gives 
a correct representation of the behaviour of these thermoconvective vortices, 
especially for the fluctuating regime. However, this numerical study is in our 
case more an analysis on an arithmetical computer rather than a theoretical 
study. For this reason, we now proceed to a study of stability by the Galerkin 
technique to try to define the conditions for the onset of fluctuating phenomena. 

6. Stability 
This study has two objects. 
(i) The determination of the stability criterion for a porous layer subjected 

to a constant temperature gradient by using a general method which differs 
from that developed by Lapwood ( 1948). 

(ii) The determination of the conditions for the occurrence of fluctuating 
convection by means of the Galerkin method applied to the system of equations 
describing a state already disturbed by convection (the temperature gradient 
longer being constant over the height of the layer). 

For this purpose we shall consider the system of equations (1)-(4) with the 
inertial term neglected: 

PV, t = - vp + P% - ( P / W  v, 

P = P I P  - a(T - TI)], 
h"V2T = ( P C ) , ~ .  (VT) + (PC)" Tt .  

(13) 

Q . V  = 0, (14) 

(15) 

(16) 
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If we introduce small perturbations into Darcy’s law (1 3) of the form 

T = To+8, v = ( u , O , W )  = h(t), 

v = v,+v, v, = (E) 0,K) = f (X ,Z) )  

p =Po+w’ To = g(x ,4 ,  

P = Po-PIae, 
it then becomes 

PV,t = -vw +PoB-Pga~-( ,ulK)  (V,+V). 

v x ( P g )  = ( P l m  v x vo 
a(vzv)/at = a v  x [v x (go)] - (+q V ~ V ,  

a(v2u)lat = -age,,- ( v / K )  v2u, 

Taking twice the curl of this equation and considering the fact that 

gives 

with following components: 

a(V2w)/at = age,..- (VlK) VW. 

Substitution of these small perturbations into the energy equation gives 

aslat = a*VzT, + a*Vze - MV . (v,T,) - MV . (vT,), (25) 

with a* = h*/(pc)*, the thermal diffusivity of the porous medium, and 

M = (pc)fl(pc)* but a*VzTo = M V .  (V,T,). 
Hence 

aelat = - MV . (vT,). (26) 

Considering the z component (24) of (22) and disregarding the second-order 
term in (26) we obtain the following system: 

a(v2w)lat = gae,x,- ( V / K )  vzw, 

aelat = a*ve - M(~T,, ,  + w~o, , ) .  

(27) 

(28) 

With dimensionless variables 

0’ = 8/AT, X’ = Z/H, t’ = th*/H2(pc)f, V’ = vH(pc)f/h*, 

these equations can be written as 

(F/Pr*) a(w,’,, + w:,,)/ati = Ra*0:,, - (w , ’~~  + w,’,,), 
M - w l a t l  = (e,~, + e,’..) - (t~,,, + w’~o,zl) .  

(29) 

( 30) 

We seek solutions of the form 

el = e ( z ,  t )  cos ax, w~ = w(X,  t )  COSax, (31L (32) 

whers cc = mnlA. The symbols used here am the same as those used in the nu- 
merical study. 
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The equation of continuity must always be satisfied by the perturbations in 
the velocity: 

t iz + w:# = 0, hence u' = - a-1Dw sin ax with D = d1d.z. 

This finally gives two equations: 

( F I B * )  a[(D2 - a2) w]/at = - Ra*a28 - (D2 - a2) w, (33) 

1 sinax 
a cosax 

i ae _-  = (D2-$)8- w T ~ , ~ -  -Dw- 
M at (34) 

The boundary conditions €or the velocity and temperature perturbations are 

8 = w = O  for z = O , l .  

The Galerkin method used here has been described in the work of Kantorovich 

Let us develop the perturbations in temperature and velocity in the form of 
& Krylov (1958) or Finlayson (1972). 

series of trial €unctions satisfying the boundary conditions: 

N N 

i= l  i=l 
e(z,t) = C ai(t) a&), w(z,t) = r, b,(t) W,(z ) .  (35) 

These are introduced into (33) and (34), which are then multiplied by W, and 
O,, respectively, and integrated over the height of the layer. Hence 

(F/Pr*) = Ra*B,,a, +C,,b, (36) 

(37) M-lDijdb,/dt = Eijai + Fiib,, 

A$, = 

with 

p w i  y. - a 2 q  w,) az. 1: 
The other matrices are defined in the same way. 

Expressed in a matrix form these relations become 

AdCldt = BC, 

where A and B are square matrices, C the column vector of the coefficients and 

dC/dt = A-1 BC = LC. (38) 

In  general a phenomenon controlled by a system of linear equations with 
constant coefficients will remain stable if the roots of the characteristic poly- 
nomial are either real and negative or complex with a negative real part. 

The solution of the differential system (38) is 

Cj = cgexp(A,t) (j = 1, ..., 2N) .  (39) 

The necessary and suEcient condition for the system to be asymptotically 
stable is that the eigenvalues of the matrix L have a negative real part. The 
characteristic polynomial can be written as follows: 

det(L-hl) = 0 
( I  is the identity operator). 
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N = l  AT = 2 
I----- 7 

Trial function Ra,* Raz EC 
(1 - 2) 22i-1 40- 000 3.1623 39,937 3.1591 
[ (1-z)z]  (22- -1) (2~4 40.000 3.1623 39.479 3.1410 
[(I - 4  zli 40.000 3.1623 39-479 3.1416 
sin [(Zi- 1) nz] 39.478 3,1416 

TABLE 2. The critical Rayleigh number and growth rate for the onset of 
convection calculated using the Galerkin method for four trial functions. 
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FIQURE 9. Variation of the critical Rayleigh number Ra: as a function 
of x for different choices of the Rayleigh number. 

We have used the Routh-Hurwitz criterion, which gives the necessary and 
sufficient conditions for all the roots of the characteristic polynomial t o  have a 
negative real part. Let us consider only neutral, time-independent evolution, 
neglecting time-dependent, oscillating evolution. I n  this case the Routh- 
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I 

400 - 

L *; 
4 

350 - 

Ra* 

FIGURE 10. The  fluctuating critical Rayleigh number obtained by extrapolation 
of the RaL curve as a function of Ra* up to the value €lac& = Ra*. 

Hurwitz criterion is equivalent to setting to zero the determinant of the matrix 
B in (38) (Finlayson 1972, p. 150). This condition can be satisfied only for special 
values of the Rayleigh number corresponding to marginal conditions. As a 
first step we assign to the terms To,z and To,z in (33) the values 0 and 1, respec- 
tively, which correspond to the state of pure conduction, and seek the critical 
Rayleigh number at  which convection occurs. The results are given in table 2 
for four trial functions satisfying the boundary conditions and for a develop- 
ment (39) limited to the order of 2. 
Ra: = 47rZ and ac = 7~ are the exact values. The last trial function makes it 

easy to find these values since it corresponds to the exact solution of the equa- 
tions used. In  a second step the method described above enables us to define 
the conditions for the appearance of fluctuating natural convection. Fluctuating 
convection develops only from a stable convection state defined by a temperature 
field which is known only from experiment or calculation. 

The numerical model described in $ 2  will give complete information for a 
given Ra* and aspect ratio A .  Consider, for example, an aspect ratio A = 1 for 
a Rayleigh number arbitrarily chosen within the range for stable convection. A 
numerical calculation gives for some values of x the terms To,* and To,* of (34) 
as a function of x .  

At each value of x the stability is studied using the method described above 
by means of a secondary program which gives the minimal critical Rayleigh 
number as a function of the wavenumber. The trial functions are chosen under 
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the assumption that two instabilities given by a function sin 2inx develop 
symmetrically with respect to z = 0.5 over the height of the layer. A critical 
Rayleigh number Raz(x)  calculated in this manner is higher than the Ra* 
value chosen as far as it does not take the critical value. Ra: is plotted as a 
function of x in figure 9. It can be seen that the minimum in this curve lies at 
x = 0.5 and that the corresponding value Ra$m is still higher than the Ra* 
chosen. The calculation is repeated for several values of Ra* and the curve 
reproducing the Ra& values as a function of Ra* is extrapolated up to the value 
RaZm = Ra* (figure 10). For this value of Ra$ (in the case of Ra$ = 384 -t- 5) 
fluctuating phenomena are found to occur. 

It has been noted that near this critical point the calculation becomes less 
and less convergent; at all higher Ra* values the numerical calculation is 
divergent and the stability can no longer be studied. 

To sum up, this study of the stability, from an initial state of stable convection, 
in a porous layer subjected to an adverse gradient shows that (i) the fluctuating 
critical Rayleigh number Ra; = 384k 5 for A = 1 agrees with the solution of 
the numerical problem and (ii) the instabilities are located in the middle of 
the horizontal sides of the cell, as can be seen in figure 6. 

7. Conclusions 
The investigations of natural convection to date seem to be motivated by two 

factors. 
(i) A more accurate description of the phenomena with some improvements 

concerning the heat transport between the fluid and the porous matrix, the 
variations with temperature of the physical characteristics or the variation 
with the filtration velocity of the thermal conductivity tensor. 

(ii) A study of stability for various geometrical configurations and under 
different boundary conditions. This study is not limited to the case of porous 
media and several investigations of the problem of a fluid heated from below 
have been carried out (Moore & Weiss 1973; Busse 1968). 

The purpose of the present study is to contribute to the understanding of 
the phenomena observed experimentally in a horizontal porous layer in two 
respects. 

(i) The results show that the choice of a numerical two-dimensional model 
based on experiments in which fluctuating phenomena were observed in cells of 
small thickness is fully justified. They point out the prevailing influence of the 
cell aspect ratio for the onset of instabilities. This parameter is generally not 
actually controlled and varies with time from one vortex to another. If the 
numerical model used cannot take into account this possibility of variation of 
A it can show, however, the occurrence of these instabilities, which are the first 
signs of the appearance or disappearance of a couple of vortices. 

(ii) The stability analysis developed here using the Galerkin method enables 
one to find the conditions for the onset of natural convection: Ra* = 47?, and 
also to predict the fluctuating critical Rayleigh number Ra* = 384 for the 
aspect ratio A = 1, a result which agrees very well with the results obtained 
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with the numerical model. The results discussed here still give a very imperfect 
reproduction of the facts. A more realistic approach could be made by using a 
numerical three-dimensional model, in which the reduced height of the layer 
would be very small compared with the transverse dimensions, and by intro- 
ducing into the calculation boundary conditions closer to reality. 

The author wishes to express his thanks to Professor J. J. Bernard, Director 
of the Laboratoire d’A6rothermique of the C.N.R.S., for helpful discussions on 
this study. 
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